This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
Uploaded EIS data from first measurement session. Four measurement sessions together with Sunfire were performed. The system has been in steady operation for more than 5 weeks: no faults have been induced yet, so these measurement work as a reference for upcoming fault tests. The results show no degradation during the weeks and the equipment is working consistently.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
The system is all set for operation (water cooling system, air, fuel & contaminent DMS lines, electricity and ethernet connections).
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
The main concept upon which the RUBY project is built consists in combining conventional and advanced monitoring techniques to derive a large set of features, which can give an appraisal of the SOH of FCSs components (i.e., stack and BOP) with higher accuracy with respect to other currently available approaches. Particularly, the considered techniques are based on Electrochemical Impedance Spectroscopy (EIS), which has been widely recognized as an essential method for the investigation of different phenomena occurring with fuel cell stacks. The recent advancements achieved with the HEALTH-CODE project and the INSIGHT project proved the capability of performing on-board EIS monitoring processes with sinusoidal and PRBS stimuli, moving this technique from laboratory uses to product applications. A proper integration of such technique with diagnostic, prognostic and control functions will help achieving FCSs performance improvement and lifetime extension.
The use of EIS-based approaches will foster the early fault detection and isolation and enhance the proper application of mitigation strategies, with benefit from both performance, durability and availability point of views, starting from the main outcomes of HEALTH-CODE and INSIGHT projects.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
Eifer is actually setting the test bench for stack testing activity: this required deep test bench adaptations and new designs (see pics) to allow for characterization under different conditions (normal vs. faulty), due to the utilization of harmful gases and to assure for good quality data. Even though COVID restrictions, Eifer is ready to begin the stack testing activity (50% of completion).
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
WT2.1. A package with data for 3 Backup systems has been shared with the partners from the WP.
WT2.2. The necessary documents (Stack and System manual, test protocol) have been shared with the partners in the WP. Several meetings have been held in the group to align on the details from the Test protocols to be performed for the stack and the systems to be tested.
WT2.3. A mockup has been made at BPSE’s premises from a 5kW system, to be ready for testing by EIFER. The Mockup contains one new stack. The mockup has been delivered to EIFER. The other two stacks will be delivered later in the project, when the testing planning requires them.
WT2.4. The first system has been sent and installed at UBFC. The second system has been installed at BPSE’s facilities. Both systems are ready for testing.
WT4.4. Several meetings have been held together with the partners to analyze the data shared on WT2.1.
WT6.2. The activities for allowing the performance of EIS measurements on-board the BPSE PEMFC are ongoing. Pre-study shows that the DC/DC converters could not be modified for the project scope. Alternative feasibility study has been made to see if we can use the system’s internal booster for same purpose. Multiple meetings have been held with partners for ensuring alignment for technical functioning.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
EPFL is currently mounting a new segmented stack test bench, able to gain deeper insights into the local phenomena in terms of current density and temperature distribution. EPFL developed an SOFC model of both stack and system that captures the fundamental behavior of the systems and provides a good trade-off between accuracy and fast computation. This model was integrated in the RTO approach and tested through simulations. This study consisted in testing the proposed optimization approach in the FC stack and system under induced degradation and with different objective functions. Additionally, EPFL has worked toward developing an interface between the SOFC system and the user that allows the system to be remotely steered and controlled by a third-party entity.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
The Ballard system, the FCGen – H2PM, has been shipped to UBFC premises and installed.
The activity belongs to WP2 and allows to conclude the MS3
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
The Ballard stack (1 out 3) of the FCGen – H2PM, has been shipped to EIFER premises.
The activity belongs to WP2 and is identify as part of MS2
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.