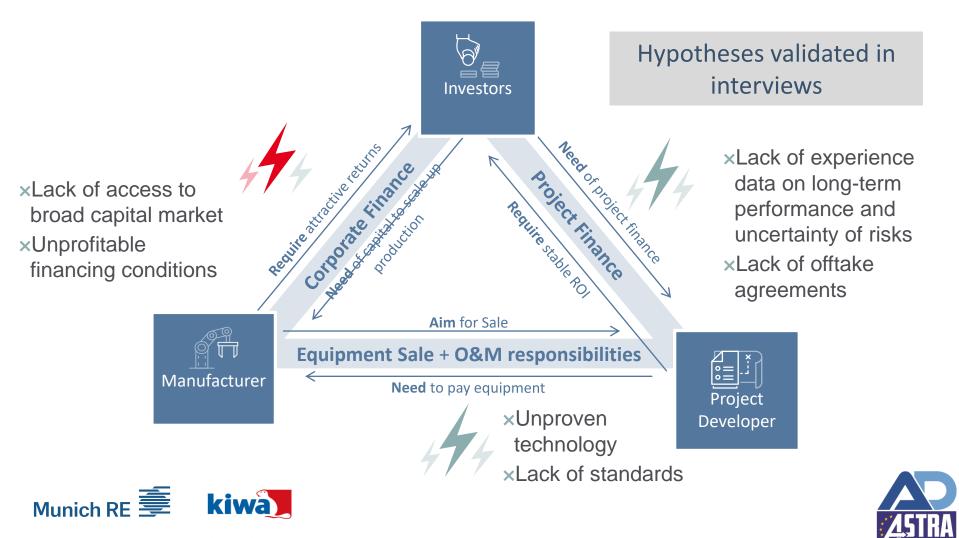
RELIABLE FUEL CELL PERFORMANCE FROM BASIC PHENOMENA TO SYSTEM MANAGEMENT

S. J. McPhail – C. Pianese (UNISA) – D. Pumiglia (ENEA)



A WORLDWIDE TECHNOLOGICAL CHALLENGE

- Useful lifetimes of >80kh expected/needed for commercial fuel cell stacks (stationary CHP and energy storage applications)
- Achievable through:
 - more reliable system design, control, diagnostic tools
 - addressing intrinsic degradation of the cell assembly
- No reliable degradation models currently available nor validated test procedures to predict durability in a practical timeframe
- Resource- and time-consuming real-time durability tests required for verification of material/component modifications
- Accelerated tests with reproducible transfer functions to real-life operation required
- 1000h stack test = approximately 10 k€ operational costs. Typical testing times are 15 kh for industry qualification. AIM: reduce to 3kh and 120k€ can be saved per test.

A WORLDWIDE COMMERCIAL CHALLENGE

• Uncertain and unproven technologies cause a vicious circle

A WORLDWIDE COMMERCIAL CHALLENGE

Innovative insurance solutions cover risks that will enable sustainable business growth

- \rightarrow Unproven technology
- \rightarrow Lack of standards

Munich RE

→ ACCELERATED TESTS

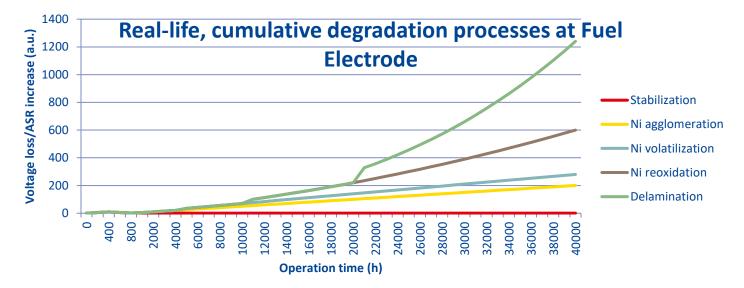
*Excluding outside factors (e.g. grid)

A WORLDWIDE TECHNOLOGICAL CHALLENGE

- A great number of operational parameters influence SOC degradation, each contributing according to characteristic times and intensities, often in convoluted or even contrasting fashion
- The closely knit processes in a working SOC (CHP & P2X) often lead to domino-effects, whereby acute degradation occurring in one component or area can trigger or accelerate degradation elsewhere in the stack. → Focus on critical components for systematic assessment of effects
- **Critical components** limiting SOC stack lifetime:
 - Fuel electrode
 - Oxygen electrode
 - Interconnect

DEGRADATION PHENOMENA: THE FUEL ELECTRODE CASE

• Fuel electrode


COMPONENT	LOCATION	OPERATIONAL DEGRADATION			CRITICALITY	
		Effect	SOFC MODE	SOEC MODE	(1 low-5 high)	ACTIVATION
Fuel Electrode	Functional layer	Ni agglomeration	Morphological instability	equal to SOFC	4	thermal
	Functional layer	Ni depletion	Volatilization; loss of Ni percolation	equal to SOFC	4	thermal/ chemical
	Support	Reoxidation	leakage @ seal interface due to seal degradation	likely equal to SOFC	2	is a seal problem!
	Support	Reoxidation	leakage @ seal interface due to thermal cycling mechanical stress	unlikely due to little thermal cycling operation;	2	is a seal problem!
	Functional layer/ electrolyte	Delamination	equal to SOEC	YSZ fragilisation	2	mechanical

- Decrease in TPB length \rightarrow activation losses
- Decrease of electrical conductivity \rightarrow ohmic losses
- Fuel leakage, starvation, cross-leakage → mass transport losses

ACCELERATED STRESS TESTS: WHY?

• Fuel electrode

- Accelerated Stress Test aims to:
 - Design and verify component improvement with time/cost effectiveness
 - Build reliable models for Remaining Useful Life prediction
 - Improve stack/modules Diagnostics, Control and Real-Time Optimization hardware & software

ACKNOWLEDGEMENTS

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under **Grant Agreement No 825027**. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe.

www.ad-astra.eu

