

Robust and reliable general management tool for performance and durability improvement of fuel cell stationary units

Degradation-aware energy management of fuel cell-based VPPs M. Califano¹, M. A. Rosen², M. Sorrentino³, C. Pianese⁴

RUBY WORKSHOP, LUCERNE (CH)

5 JULY 2022

¹PhD Student University of Salerno – AVL GmbH

- ² University of Ontario Institute of Technology, Oshawa, Ontario
- ³ Dept. of Industrial Engineering University of Salerno

© All rights reserved. Unauthorized use or reproduction without authors consent is prohibited. Material presented at the Workshop jointly organized by H2020 Projects AD ASTRA and RUBY on 5th July 2022 – Lucerne (CH)

Scenario – Energy Technologies & Uses JIV¦ O II X U

RUBY aims at improving **FCs** performance and durability (>40000 h) through an **MDPC** algorithm **VPPs** are ready-made energy options to be suitably embedded in **Smart Grids**

What is a Virtual power plant (VPP)?

- A **Virtual Power Plant** is a cloud-based combination of different distributed energy systems (with innovative & traditional technologies).
- The integration of **VPPs** in the energy-market can reduce the **risks of energy shortages**, improve the overall **efficiency of the network** and enhance the **flexibility of the the grid** with respect to load and RES fluctuations.

In such environments, systems like **fuel cells, electrolyzers, reversible cells** and **RES** are perfectly suitable

• FC/Electrolysers/Reversible cells can further support the transition to more distributed energy generation paradigm.

RUBY goals/1

Practical case-study: residential complex*

Configuration:

- Grid-connected virtual power plant
- Both SOFCs and PEMs as energy devices systems
- Electrical storage by means of batteries as well as hydrogen/methane
- Electric and thermal loads coming from the overall residential complex (6 apartments)

In such a case the SOFC and PEM devices can be seen as VPP themselves

* M. Califano et al. – Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage. Applied Energy 319 (2022) 119268

RUBY goals/2

The **MDPC** algorithm serves at:

- FCs monitoring and diagnostics
- FCs management taking advantage of both SOFCs and PEMFCs strengths
- Suitably interfacing with the smart grid requests \rightarrow Optimal energy management
- FCs scheduled maintenance

Potential combination of two competitive technologies (PEM & SOFC) to:

- different or unexpected power request transients
- reliably meeting peak power demand

Case study – Example of microgrid

An all-in-one solution

- Renewables \rightarrow Electricity
- rSOC + Hydrogen storage tank \rightarrow Hydrogen
- Thermal energy storage \rightarrow Thermal energy

Test Case Data

- $rSOC = 15 kW$
- $PV = 30$ kW
- Wind turbines = 41 kW
- H_2 ST capacity = 136 kg
- TES thermal capacity = 51 kWh

Optimal energy management DP

System variables

- Loads and production (RES) are known a priori (*wⁱ*)
- **Control variables** are El. Power from the grid and Thermal energy from boilers (*uⁱ*)
- Two **state variables** parallel optimization for both H_2 ST and TES state of charge (*xⁱ*)
- Output variable (*y*) is the rSOC electrical power

Example of Electrical Energy (SOFC mode)

Potentially applicable to thermal energy

DP solution scheme

DP routine - State Variables

- The first state variable of the DP optimization is the Hydrogen Storage Tank (HST) state of charge \rightarrow SOC_{HST}
- The second state variable of the DP optimization is the Thermal Energy Storage (TES) state of charge \rightarrow SOC_{TFS}
- They must be in a region identified by the upper bound and the lower bound
- The **initial and final values** must be the same

Clean Hydrogen Partnership

RUBY DP routine - Cost function

DP minimizes the performance index that is calculated through the cost function:

$$
J = \int_0^t (P_{bought} \cdot C_{bought} - P_{sold} \cdot C_{sold}) dt
$$

 P_{bought} includes both the electric and thermal power (gas), instead P_{solid} includes only the electric power

Different values of the control variables return different state variables paths (green and black) leading to different values of *.*

1-D example

DP provides as output the path that has the minimum value of the performance index *J*

© All rights reserved. Unauthorized use or reproduction without authors consent is prohibited. Material presented at the Workshop jointly organized by H2020 Projects AD ASTRA and RUBY on 5th July 2022 – Lucerne (CH)

rSOC modelling (maps*) RUB

14 Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) –

The rSOC works 100% of the time

* M. Califano et al. – Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage. Applied Energy 319 (2022) 119268

rSOC 15 kW

1° state variable -> SOC_{HST} 2° state variable -> SOC_{TES}

* M. Califano et al. – Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage. Applied Energy 319 (2022) 119268

Degradation-Aware Control w/ MDPC

The use of a Prognostic tool (MDPC) for degradation prediction allows to optimize the control leading to a lower H2 consumption (i.e. $x_1 = SOC_{HST}$)

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

Clean Hydrogen Partnership

Thanks for your attention

Cesare Pianese pianese@unisa.it

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 875047. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Italy, France, Denmark, Slovenia, Finland, Germany, Switzerland

Benefits of MDPC tool & VPP l V. converter to the converter *MDPC tool &

Will improve*
 Opting
 Optionerigy
 Optioner
 Deperiment
 *Deperiments

<i>Desentation*
 Condrager
 Condrager
 Condrager
 Condrager

RUBY outcomes will improve

- Remote monitoring
- Smart grid management &
- Virtual Power Plant-based management
- Maintenance (predictive)

Outline of the presentation

– VPP and application to a

