AD ASTRA

FROM BASIC TO APPLIED RESEARCH TOWARDS DURABLE AND RELIABLE FUEL CELLS

SOLID POWER

sunfire

Stephen J. McPhail, Davide Pumiglia, Massimiliano Della Pietra

5th July 2022 – Lucerne (CH)

Workshop jointly organized by H2020 Projects AD ASTRA and RUBY

PROJECT ID

Released by: FCH-JU **Topic:** FCH-04-3-2018: Accelerated Stress Testing (AST) protocols for Solid Oxide Fuel Cells (SOFC). 1st of 4 proposals

First name: AD ASTRA

Last name: HArnessing Degradation mechanisms to prescribe Accelerated Stress Tests for the Realization of SOC lifetime prediction Algorithms Start of the project: 1 January 2019 End of the project: 31 August 2022 Grant Agreement number: 825027 Costs declared: € 3,008,426.25 → 100% funded

PROJECT HIGH-LEVEL OBJECTIVES

- Enhanced, multidimensional Failure Mode and Effects Analysis (FMEA)
 matrix for SOC stacks tested in the field: stack operation → performance monitoring → post-mortem analysis
- Prioritization of dependent and independent variables causing observed degradation
- AST protocols that address realistic failure modes of fuel electrode, oxygen electrode and interconnect in power-to-X (P2X) and combined heat and power (CHP)
- Target AST durations < 3000 hours ← → real-world stack < 40,000 h identifying transfer functions of degradation measured in AST to realworld behaviour within a ±15% uncertainty margin
- worid benaviour within a ±15% uncertainty margin
 Remaining Useful Life (RUL) prediction models based on operating profile (including accelerated stress conditions) in real-time
- A generalized methodology for the definition of ASTs submitted for standardization to the International Electrotechnical Commission (IEC)

¢

N.S.

Fuel electrode

PROJECT APPROACH

Remaining Useful Lifetime prediction

AD ASTRA:

- Understanding of most critical failure modes in the critical components of the stack
- Formulation of mechanistic and fast stochastic models for lifetime prediction
- Develop AST protocols able to control and steer (& accelerate) degradation mechanisms

IMPLEMENTATION

WP2: Database, Design of Experiments and Protocol Development

WP4: investigate and characterize macroand micro-samples after the experimental sessions and correlate changes in materials or degradation effects to real-life events observed during the experiment

WP5: Identification of the main degradation parameters, Development of grey-box degradation models and Definition of proper stack performance and lifetime models

WP3: identify and develop relevant test samples to study specific degradation mechanisms

WP2: DATABASE, DOE AND PROTOCOL DEVELOPMENT

• To gather, organize and safely store: (i) project input data/information; (ii) data/results generated during the implementation of the project; (iii) project output data/results.

• To provide a framework ensuring efficient data exchange between partners.

• To analyse all relevant input data/information from previous projects.

• To programme experiments in a cyclic approach.

• To formulate replicable AST protocols, with definition of the accelerating factors.

• To describe a generic methodology for the definition of AST protocols for SOC

WP3: EXPERIMENTATION

• To supply test samples to study specific degradation mechanisms.

• To design and develop systematic tests, both *ex situ* and *in situ*, on components and short stacks based on WP2 analysis.

• To supply WP4 (Post-test analysis) with well-documented, tested samples for further microstructural and physico-chemical analysis.

• To generate measurement data for WP5 (Modelling) and WP2

2 Different approaches

WP4: POST-TEST ANALYSIS

 To investigate and characterize macro- and micro-samples after experiments.

• To identify weak spots in the stack components (i.e. fuel and oxygen electrodes, interconnect, and their interfaces).

 To correlate changes in materials or degradation effects to real-life events observed during the experiment.

• To transfer morphological, microstructural and chemical data to WP5 for the refining of the modelling process.

Cathode

i contact lav

Fue

contact lay

Fuel

-0.6

-0.8

WP5: MODELLING

• Identification of the main degradation parameters from available data and high-level physical models.

- Development of grey-box (i.e. simplified) degradation models, describing the time evolution of degradation parameters.
- Feed into WP2 as necessary for experimental parameter estimation.

• Stack performance and lifetime models, with embedded degradation mechanisms, simulated through parameter-based and statistical approaches.

• Association of suitable stochastic and signal treatment based algorithms to define uncertainties in high and low-level physical models in order to.

• Identification of statistical approaches allowing extrapolation of accelerated variables from high to low acceleration levels.

FINAL STEPS...

Results from in situ and ex situ final campaigns...

...characterization results of accelerated stress-tested samples and stacks...

Harmonized AST protocols &

Final version of models

incl. degradation functions validated accelerating factors RUL estimation

A *generalized methodology* for the definition of ASTs **submitted for standardization** to the International Electrotechnical Commission (IEC)

ACKNOWLEDGEMENTS

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under **Grant Agreement No 825027**. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe.

www.ad-astra.eu

