RUBY Project **RUBY** Robust and reliable general management tool for performance and durability improvement of fuel cell stationary units

FUEL CELL STATE OF HEALTH FORECASTING USING ECHO STATE NETWORKS

DAMIEN CHANAL, NADIA YOUSFI-STEINER, DIDIER CHAMAGNE, MARIE-CÉCILE PERA

CONTACT : DAMIEN.CHANAL@FEMTO-ST.FR

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

Echo State Networks

Designed approach

Echo State Networks

Designed approach

Limitation \rightarrow Lifetime of fuel cells

DOE objectives 2020 : 40 000h Stationary / 5000h Vehicle Ultimate : 80 000h / 8000h

Tools :

Diagnosis \rightarrow Detection of degrading conditions Prognosis \rightarrow Forecasting future performance

Control \rightarrow Changes in operating conditions

Echo State Networks

Designed approach

Y Prognosis principle

Time

RUB

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

Prognosis principle

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

(F) FC LAB

BY Echo State Network

Echo State Network :

- Development: 2000s by Herbert Jaeger
- Derived from RNN
 - Replacement of RNN layers by a reservoir
- Specificities :
 - Propagation of information in a high dimensional space
 - Data separation
 - Setting the weights of recurrent connections randomly
 - Drive the network with only the output weights

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

BY Echo State Network - ESN

ESN parameters

- Spectral radius
 - Matrix eigenvalue
 - Amplification of internal states as the network process information
 - High value \rightarrow Strong amplification
- Leaky rate
 - Decay rate of information in the internal states over time
 - Low value \rightarrow Retain mainly old information
- Connectivity
 - Percentage of non-zero weight in the reservoir matrix
 - Improves calculation times \rightarrow Faster reservoir updates
 - Develops individual dynamics
- Number of neurons
 - Possibly very large > 1000 \rightarrow Linear regression
- Initialization of weights
- Random Uniform / Normal distribution

Bidirectional Echo State Network - ESN

© All rights reserved. Unauthorized use or reproduction without authors consent is prohibited. Material presented at the Workshop jointly organized by H2020 Projects RUBY and REACTT on 15th Sept. 2023 – Capri (I

Limitations of ESN:

- Difficult to learn long term dependencies \rightarrow Focus on last time steps
- Don't memorize the context

Solution: Bidirectional reservoir BiESN

- Double the number of reservoirs
- Sequence learning in chronological and reverse direction

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

(F) FC LAB

Multi-reservoir ESN

Limitation of ESN:

Complexity to find good reservoir parameters

Solution: Multi-Reservoir :

- Use of reservoirs in parallel and/or in series
- Different parameters for each reservoir → more chances to capture the dynamics
- Decreasing burden of the parameter optimisation

Echo State Networks

Designed approach

Analyze of results

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

Provide Approach - Network

ESN Multi-reservoir bidirectional

- 3 specialized bidirectional reservoirs: low, medium and high dynamics
 - Minimize reservoirs optimization
 - Maximizing detectable dynamics

RUB

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

(F) FC LAB

Designed approach - Database

- $\,\circ\,\,$ From the 2014 IEEE PHM challenge \rightarrow Open Database
- Long-term test (1000h) on two PEMFC-LT
 - 1st test: static state
 - Constant current 0.7 A/cm²
 - 2nd test: triangular current ripple
 - DC component 0.7 A/cm²
 - Triangular component 0.14 A/cm² peak to peak
- Only the static state is studied in this presentation
- Acquisition frequency: 1/30Hz
 - Choice to retain 1 pt / 6h with a rolling window \rightarrow Only a trend is studied

Raw data

14

Echo State Networks

Designed approach

Results – Comparison with MR-Forward ESN

MR-BiESN (100neurons/reservoir) 3.36 Corrected prediction Itterative prediction 3.34 3.32 3.30 3.28 Aoltage [V] 3.26 3.24 3.22 3.20 200 400 600 800 1000 0 Time [h]

Corrected forecasting \rightarrow Only predict next timestep \rightarrow no bias

- MR-BiESN is slighty less able to predict the next timestep
 - Backward layer learn information on past history "less" relevant
- MR-Forward ESN is focus on last historical data
 - Correspond more to corrected forecasting as bias is not accumulated

Forward ESN ≥ Bidirectional ESN

Results – Comparison with MR-Forward ESN

Iterative forecasting \rightarrow prediction is used as new input

- MR-BiESN network catches periodic recovering process
 - Linear trend with recovering
- MR- One Way ESN catches only global trend

Bidirectional ESN >> Forward ESN

Comparison with BiLSTM

LSTM: 563 401 trainable parameters

- Need more iterations to converge (x3)
- Results seems underfit \rightarrow underfitted
- Lack of data

MR-BiESN network: 601 trainable parameters

Better performances for small dataset

Conclusion

19

- Synthesis:
 - Principle of Echo State Networks
 - Prognostic approach based on data only
 - Study case on a fuel cell
- Designed approach advantages
 - Dynamics correctly captured
 - Better performances than BiLSTM for small databases --> Most used Network for forecasting
 - Ability to improve by re-optimizing with recent data
 - Can be applied to many systems
- Future prospect:
 - · Generalization of the method with other databases

