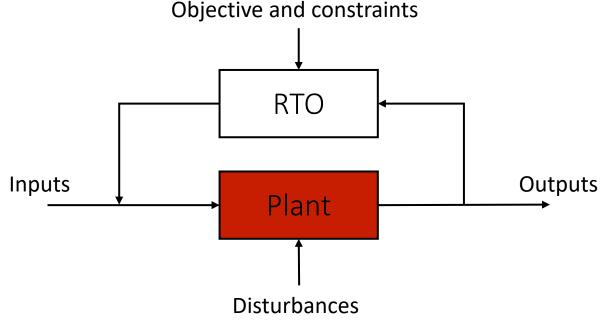


Real-time optimization of a solid-oxide electrolyser

Tafarel de Avila Ferreira Grégory François



Real-Time Optimization

Techniques that use process measurements to improve plant performance in the presence of

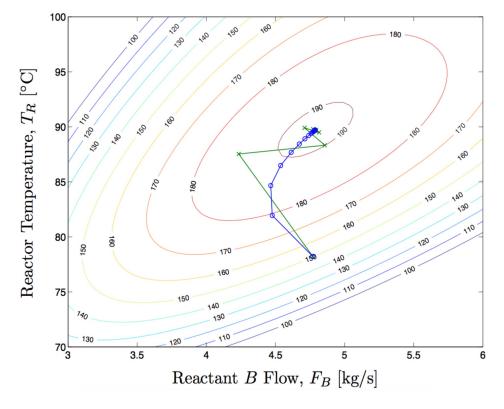
- **Disturbances**
- Plant-model mismatch

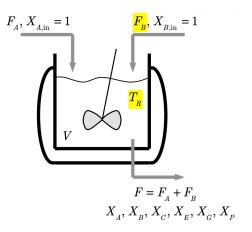
Static Real-Time Optimization

Adaptation of cost and constraint functions – **Modifier adaptation**

Model Adequacy Conditions

Definition 1 (Model-adequacy criterion). A process model is said to be adequate for use in an RTO scheme if it is capable of producing a fixed point that is a local minimum for the RTO problem at the plant optimum \mathbf{u}_n^* .


Proposition 1 (Model-adequacy conditions for MA). Let \mathbf{u}_p^* be a regular point for the constraints and the unique plant optimum. Let $\nabla^2_r \mathcal{L}(\mathbf{u}_p^*)$ denote the reduced Hessian of the Lagrangian of the optimization problem at \mathbf{u}_p^* . Then, the following statements hold:


- i. if $\nabla_r^2 \mathcal{L}(\mathbf{u}_p^*)$ is positive definite, then the process model is adequate for use in the MA scheme.
- ii. If $\nabla_r^2 \mathcal{L}(\mathbf{u}_p^*)$ is not positive semi-definite, then the process model is inadequate for use in the MA scheme.
- iii.If $\nabla_r^2 \mathcal{L}(\mathbf{u}_n^*)$ is positive semi-definite and singular, then the second-order conditions are not conclusive with respect to model adequacy.

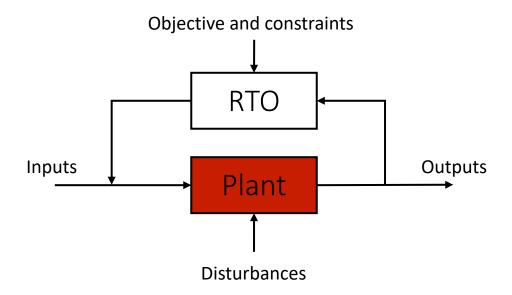
KKT Matching

Theorem 1 (MA convergence) KKT matching. Consider the problem of optimizing a plant with an inaccurate yet adequate model using MA, let $\mathbf{u}_{\infty} = \lim_{k \to \infty} \mathbf{u}_k$ be a fixed point of the MA iterative scheme. Then, not only \mathbf{u}_{∞} is a KKT point of the modified model-based optimization Problem (1), \mathbf{u}_k is also a KKT point of the plant problem.

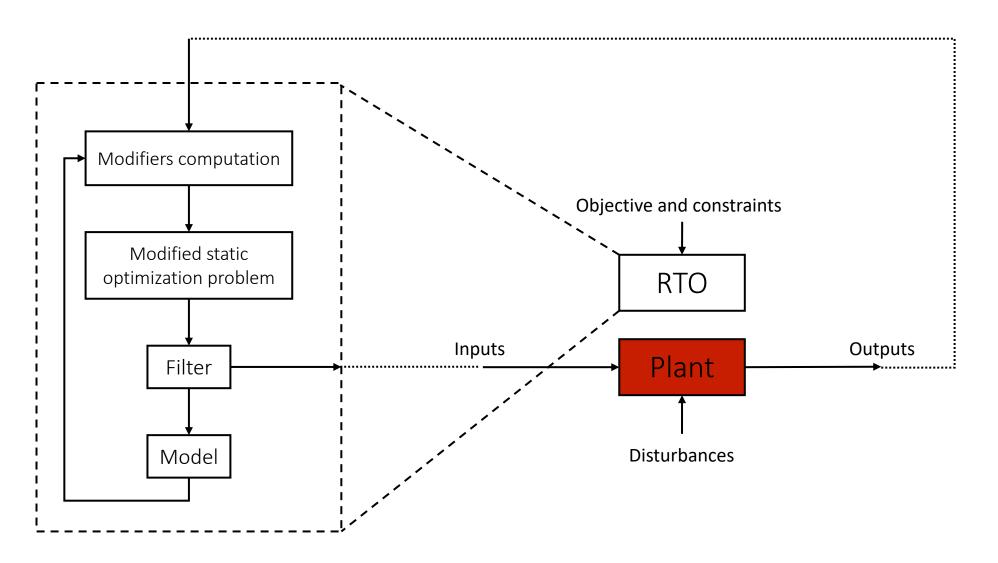
Williams-Otto Reactor

- 4th-order model
- 2 inputs
- 2 adjustable param.

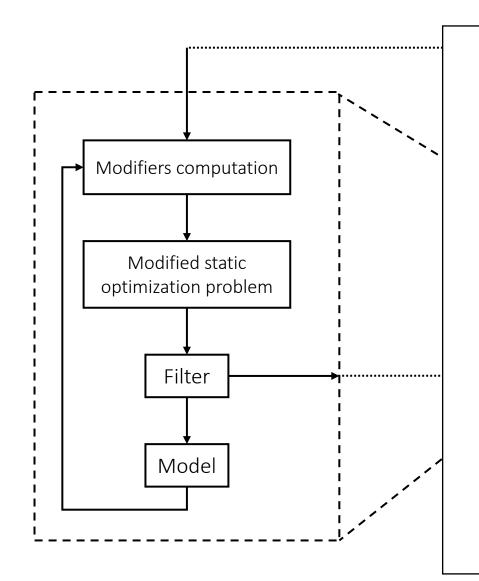
Converges to plant optimum!


Real-time optimization

- Introduces measurements into the optimization scheme
- Optimization with its requirements is performed iteratively
- Reaches optimal conditions
- Reaching the set electric power/hydrogen production requires more than just manipulate current if done optimally
- Multiple efficiencies for a set electric power/hydrogen production
- Optimal way of changing the operating conditions
- Ensures the set of the electric power/hydrogen production even if the system did not set to steady-state
- Deals with degrading systems: feasible operation
- Delays and slows down degradation


Real-time optimization scheme

Real-time optimization scheme



TO of a SOFC — RFACTT RUBY Workshop

Real-time optimization scheme

Main Idea

$$\mathbf{u}_{k+1}^{\star} = \arg\min_{\mathbf{u}} \quad \Phi(\mathbf{u})$$

s.t. $\mathbf{H}(\mathbf{u}) + \hat{\boldsymbol{\epsilon}}_{j}^{\mathbf{H}} = \mathbf{0}$
 $\mathbf{G}(\mathbf{u}) + \hat{\boldsymbol{\epsilon}}_{j}^{\mathbf{G}} \leq \mathbf{0}$
 $\mathbf{u}^{L} < \mathbf{u} < \mathbf{u}^{U}$

with:
$$\hat{\boldsymbol{\epsilon}}_j^{\mathbf{H}} := \mathbf{H}_p^{dyn}(t_j) - \mathbf{H}^{dyn}(t_j)$$

$$\hat{\boldsymbol{\epsilon}}_j^{\mathbf{G}} := \mathbf{G}_p^{dyn}(t_j) - \mathbf{G}^{dyn}(t_j)$$

Dynamic Model:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \ \mathbf{u}(t), \boldsymbol{\theta}), \quad \mathbf{x}(0) = \mathbf{x}_0$$

 $\mathbf{y}(t) = \mathbf{F}(\mathbf{x}(t), \ \mathbf{u}(t), \boldsymbol{\theta})$

where:

$$\mathbf{H}^{dyn}(t_j) := \mathbf{h}(\mathbf{u}_j, \mathbf{y}(t_j))$$

 $\mathbf{G}^{dyn}(t_j) := \mathbf{g}(\mathbf{u}_j, \mathbf{y}(t_j))$

Real-time optimization scheme

Main features

- Add bias correction terms to the constraints
- Works well when the optimum is mainly determined by active constraints
- Upon convergence, it converges to feasible point
- Converges to a KKT of the plant if model adequacy is satisfied
- Fast convergence

Main Idea

$$\mathbf{u}_{k+1}^{\star} = \arg\min_{u} \quad \Phi(\mathbf{u})$$

s.t. $\mathbf{H}(\mathbf{u}) + \hat{\boldsymbol{\epsilon}}_{j}^{\mathbf{H}} = \mathbf{0}$
 $\mathbf{G}(\mathbf{u}) + \hat{\boldsymbol{\epsilon}}_{j}^{\mathbf{G}} \leq \mathbf{0}$
 $\mathbf{u}^{L} \leq \mathbf{u} \leq \mathbf{u}^{U}$

with:
$$\hat{\boldsymbol{\epsilon}}_j^{\mathbf{H}} := \mathbf{H}_p^{dyn}(t_j) - \mathbf{H}^{dyn}(t_j)$$

$$\hat{\boldsymbol{\epsilon}}_j^{\mathbf{G}} := \mathbf{G}_p^{dyn}(t_j) - \mathbf{G}^{dyn}(t_j)$$

Dynamic Model:

$$\dot{\mathbf{x}}(t) = \mathbf{f} (\mathbf{x}(t), \ \mathbf{u}(t), \boldsymbol{\theta}), \quad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{F} (\mathbf{x}(t), \ \mathbf{u}(t), \boldsymbol{\theta})$$

where:

$$\mathbf{H}^{dyn}(t_j) := \mathbf{h}(\mathbf{u}_j, \mathbf{y}(t_j))$$

 $\mathbf{G}^{dyn}(t_j) := \mathbf{g}(\mathbf{u}_j, \mathbf{y}(t_j))$

STO of a SOFC - RFACTT RUBY Workshop

Real-time optimization of an SOE stack

- The optimization approach is solved together with the tendency model
- The SOE model itself is not updated
- Here only the constraint functions are modified by using simultaneously <u>measurements</u> from the SOE stack and the tendency model

$$\mathbf{u} = \arg \max_{\mathbf{u}} \quad \eta_{el} = \frac{q_{H_2}LVH_{H_2}}{P_{el}}$$
s.t
$$q_{H_2}^{prod} = q_{H_2}^{prod,S} + \varepsilon_{q_{H_2}} \quad \text{NL.min}^{-1}$$

$$680 \le T_{stack} + \varepsilon_{T_{stack}} \le 780 \text{ °C}$$

$$1.3 \le U_{cell} + \varepsilon_{U_{cell}} \le 1.4 \text{ V}$$

$$FU \le 0.9$$

$$q_{air} \le 150 \text{ NL.min}^{-1}$$

Stack energy balance

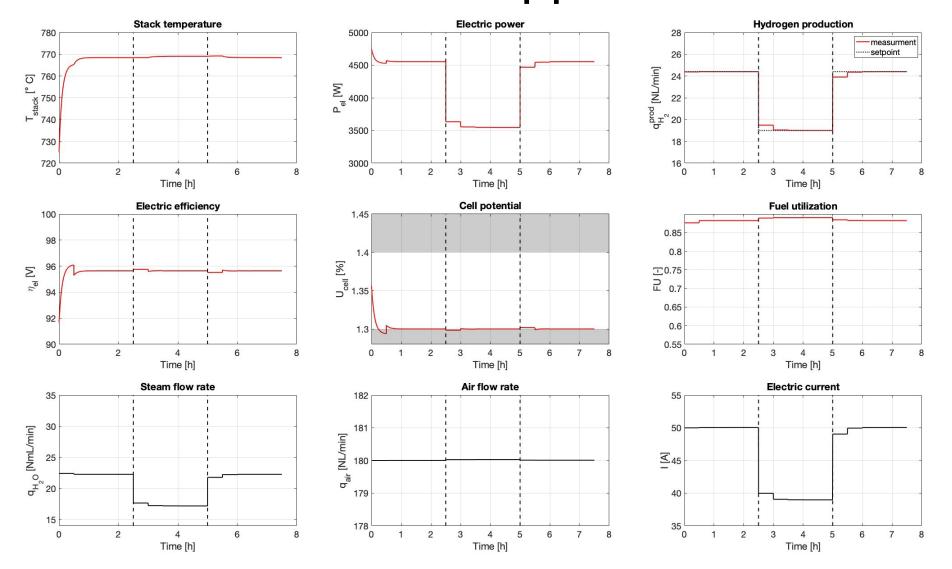
$$\rho_s V_s C_{p,s} \frac{dT_s}{dt} = \sum_{in} q_{in,i} H_{in,i}(T_{in,i}) - \sum_{out} q_{out,i} H_{out,i}(T_s) - Pel - Q_{loss}$$

Cell voltage (electrochemistry)

$$U_{cell} = U_N + \eta_{act} + \eta_{ohm} + \eta_{conc}$$

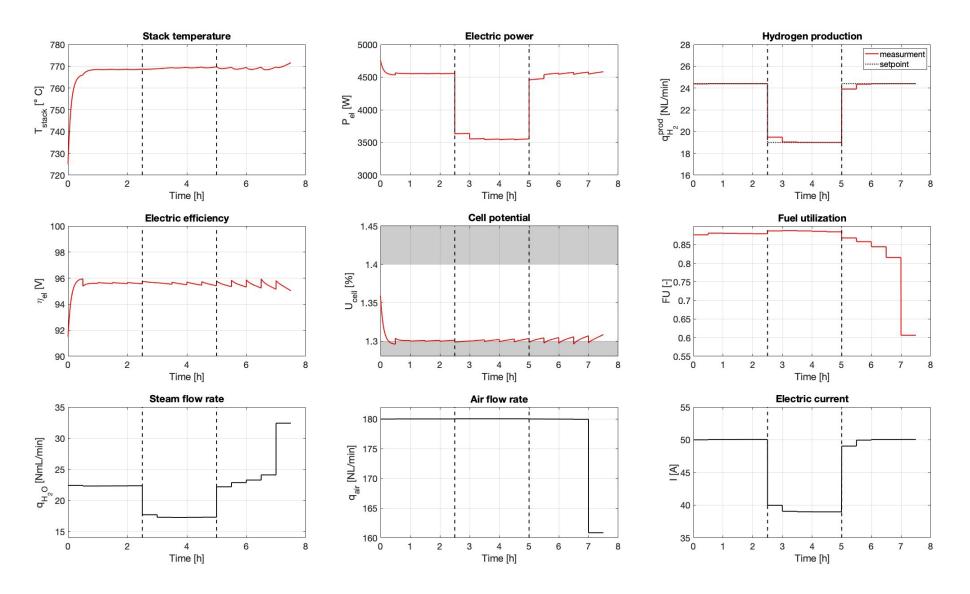
$$P_{el} = U_{cell} N_{cell} I$$

Material balance


$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} M_{A0} - M_A \\ M_{B0} - M_B \\ M_{C0} - M_C \\ M_{D0} - M_D \\ M_{E0} - M_E \\ M_{F0} - M_F \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ -1 & 0 \\ +1 & -1 \\ +1 & 0 \\ 0 & +1 \\ 0 & +1 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = 0$$

Hydrogen production setpoint

$$q_{H_2}^{prod,S}(t) = \begin{cases} 24.4 \ [NL/min], & \text{t} \le 2.5 \text{ h} \\ 19 \ [NL/min], & 2.5 \text{ h} < \text{t} \le 10 \text{ h} \\ 24.4 \ [NL/min], & \text{t} > 10 \text{ h}. \end{cases}$$


Simulation results of RTO applied to an SOEC

Simulation results of RTO applied to a SOEC with induced degradation

Conclusions

- RTO is a family of optimization methods that incorporate process measurements in the optimization framework to drive a real process to optimal performance despite disturbance
- Our group in HES-SO develops RTO approaches that tackle specific targets defined by industry requirements as well as proving their properties and experimental application for validation
- RTO is suited for a broad range of industrial processes, including electrolysers and fuel-cell systems
- The main features of RTO includes the ability of reaching plant optimality and constraint satisfaction
- A variant of modifier-adaptation has been developed and applied to a commercial system (SOLIDpower) and an ethanol-fed SOFC system

REACTT RUBY Workshop

Acknowledgement

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 101007175. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and Hydrogen Europe and Hydrogen Europe Research.

www.reactt-project.eu