

THDA application for SOEC degradation monitoring REACTT

Edvin Korlat

Content – THDA application for SOEC degradation monitoring

THDA Basics

General Diagnosis Strategy in REACTT THDA Description

Test Data Availability

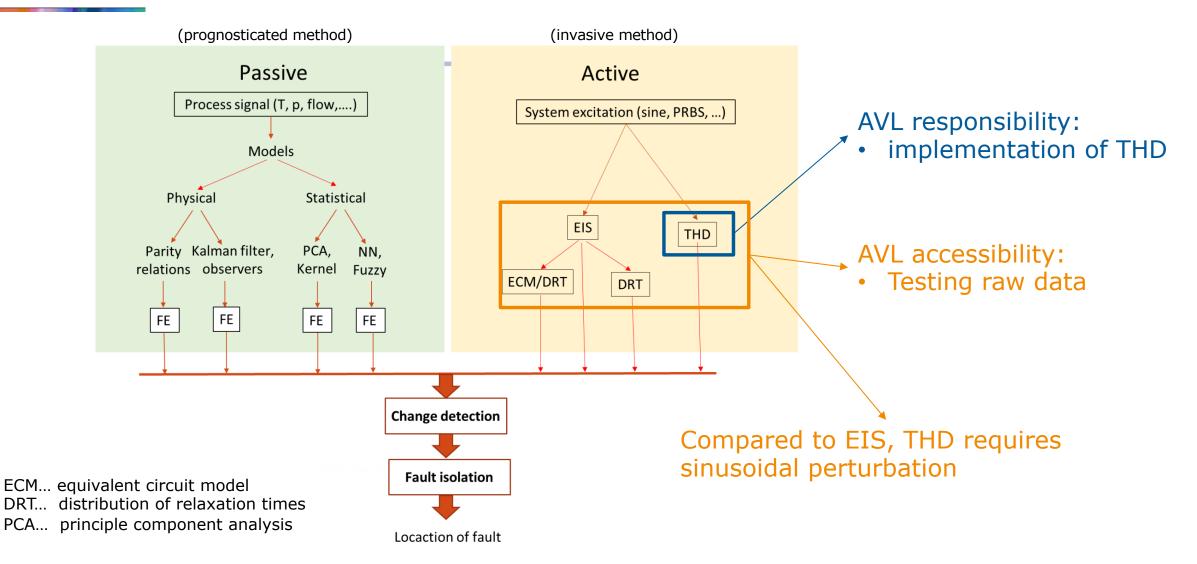
CEA

EPFL (w/ AVL X-ion)

Data Interpretation

Technical Details

Summary, Challenges & Outline

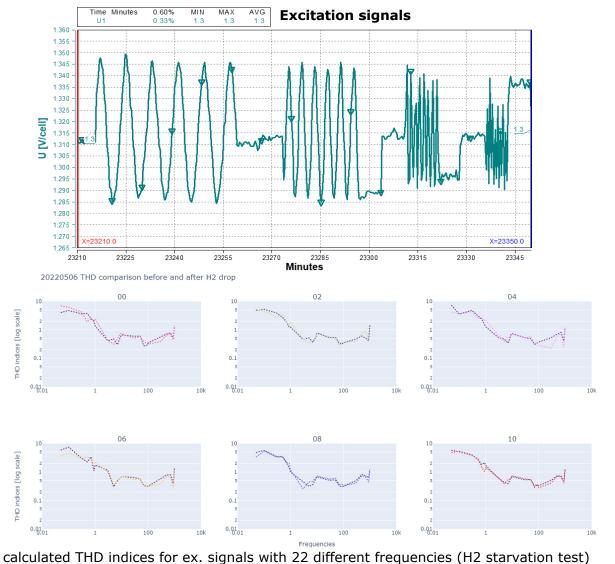


Conclusion

Summary

Next Steps

General diagnosis strategy



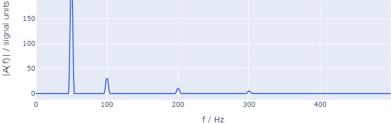
Total Harmonic Distortion (THD): technical description

- THD is used to analyze non-linearities/degradation in the system by sending a small excitation sinus signal into the system (e.g., X-Ion Device)
- Depending on the existing non-linearities in the stack polarization curve, harmonics of the excitation signal can be created, which distort the system response.
- Level of presence of these harmonics is calculated with THD index:

$$THD_{index} = \frac{\sqrt{\sum_{i=2}^{n} Y_i^2}}{Y_1} 100 \, [\%]$$

- System response to the excitation needs to be analyzed in frequency domain in order to extract amplitudes of the harmonics.
- THD indices higher then 5% indicate presence of signal distortion which could reveal the presence of stack degradation or a harmful stack operation.

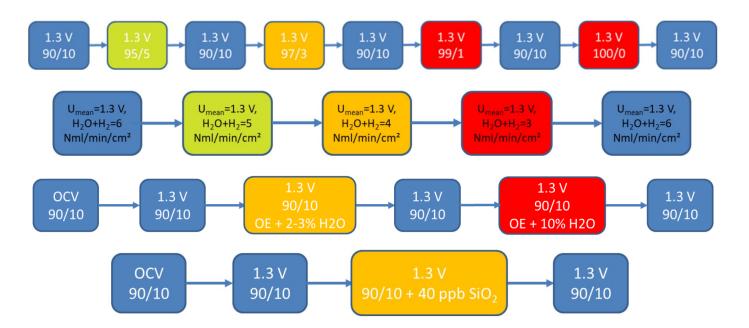
THD: Technical description


- THD analyze harmonic frequencies of a known base frequency. Harmonic frequencies are multiple integers of base frequency. THD index represents proportion of the combined intensity of the harmonics compered to the intensity of the base frequency.
- The intensities of harmonics and base frequencies are calculated with Discrete Fourier analysis, where each number in analysis result represent intensity of certain frequency in the signal.
- The occurrence of the harmonic frequency components in a signal are related to the non-linear distortion of the signal which in our case can be connected to nonlinearities in the fuel cell I-V relationship.
- Invasive excitation current and resulting voltage read out could be distorted by the nonlinearities in I-V relationship (fuel cell polarization).
- Determination of excitation frequency and amplitude is crucial for well implemented and calculated THD analysis for specific operational condition monitoring or degradation/fault isolation.

Confidential

/ 5

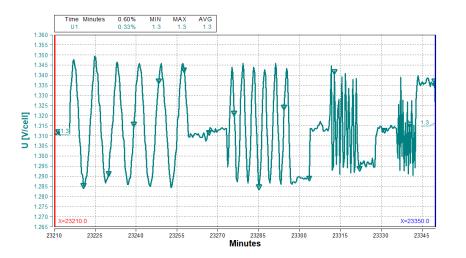
$$THD_{index} = \frac{\sqrt{\sum_{i=2}^{n} Y_i^2}}{Y_1} 100 \, [\%]$$



THD: Technical description

- The selection of the excitation signal characteristics, f₀ and A is based on the physical system and the phenomena, for which monitoring the algorithm is intended for
- Necessity for stack operation data in faulty and fault free operating modes for detection of:
 - 1. Frequency range where THD index is most visible
 - 2. Reasonable AC excitation percentage for detection of specific degradation:
 - $\circ~i_{AC}$ amplitude should not be bigger then 10% of I_{DC} current to avoid creation of additional non linearities e.g., anode reoxidation.
 - Smaller current percentage usage has small chance of second and higher harmonics detection in output voltage signal
- Out of experiments on cell level a suitable values for f₀ and A should be determined, which will be then used for the system level experiments and monitoring
- Sampling frequency should always be: $f_s > 2 \cdot n_H \cdot f_0$ where n_H is number of observed harmonics
- **Challenge:** often the measured signal is not an integer number of periods which causes the spectral leakage effect
- Main drawbacks are the requirement for an invasive excitation signal and steady state operation of the system.

General testing approach


- Planned testing protocols:
 - 1. Inlet H_2 starvation
 - 2. High steam conversion
 - 3. Humidity in O₂ electrode
 - 4. Effect of silicon poisoning

CEA H₂ starvation test

- CEA partly executed inlet H₂ starvation with only 95/5 and 100/0 water-hydrogen inlet ratio drops
- Every 2 hours excitation event was executed including 22 different excitation frequencies in rising order with same excitation amplitude

				HYDROGEN	STARVATION AT	DIFFERENT OPERATING TEMPE	RATURES ANI	D FLOWRATES		
		first part of the meas. file		second part of meas. file		first part of t		the meas. file second part of meas. file		t of meas. file
Date	Day	H2_1 [Nl/h]	H2O_1 [NI/h]	H2_2 [Nl/h]	H2O_2 [Nl/h]	Time when shift took place	H2_ratio_1	H2O_ratio_1	H2_ratio_2	H2O_ratio_2
02.05.2022	20	17,3	135,1	8,2	135	11	0,13	0,87	0,06	0,94
03.05.2022	21	8,2	135	17,3	135	11	0,06	0,94	0,13	0,87
04.05.2022	22	17,4	135	0	135	12	0,13	0,87	0,00	1,00
05.05.2022	23	0	135	17,3	135,1	16	0,00	1,00	0,13	0,87
06.05.2022	24	17,2	135,1	0	135,1	11	0,13	0,87	0,00	1,00
07.05.2022	25	0	135,1	0	135,1	-	0,00	1,00	0,00	1,00
08.05.2022	26	0	135,1	0	135,1	-	0,00	1,00	0,00	1,00
09.05.2022	27	0	135,1	17,3	135,1	11	0,00	1,00	0,13	0,87
10.05.2022	28	17,3	135,1	0	135,1	11	0,13	0,87	0,00	1,00
11.05.2022	29	0	135	17,3	135	13	0,00	1,00	0,13	0,87
12.05.2022	30	17,3	135,1	17,3	135,1	-	0,13	0,87	0,13	0,87
13.05.2022	31	17,3	135,1	17,3	135,1	-	0,13	0,87	0,13	0,87
14.05.2022	32	17,3	135,1	17,3	135,1	-	0,13	0,87	0,13	0,87
15.05.2022	33	17,3	135,1	17,3	135,1	-	0,13	0,87	0,13	0,87

Frequency [Hz]	Duration of the excitation [s]
0.05	100.0
0.1	50.0
0.3	16.66624
0.5	10.0
0.7	7.1424
0.9	5.5552
1	5.0
3	1.66656
5	1.0
7	0.71424
9	0.55552
10	0.5
30	0.16664 <u>I</u>
50	0.4
70	0.28568
90	0.2222
100	0.2
300	0.06666
500	0.04
700	0.02856
900	0.02222
1000	0.02
3000	0.006665
5000	0.004

----- part 1 020003

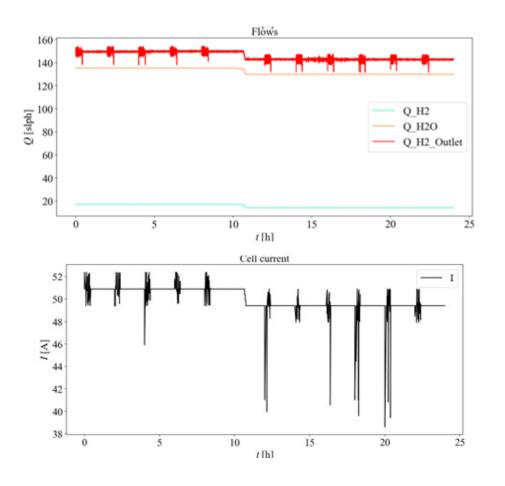
part_1 060003

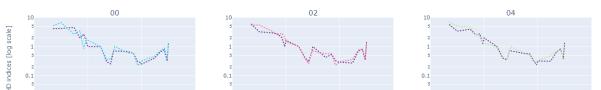
part_2 120003

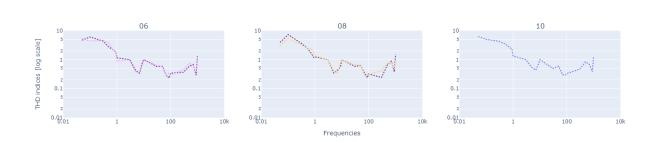
nart 2 160008

part_2 180003

part_2 220004


CEA High steam conversion


CEA executed High steam conversion fully

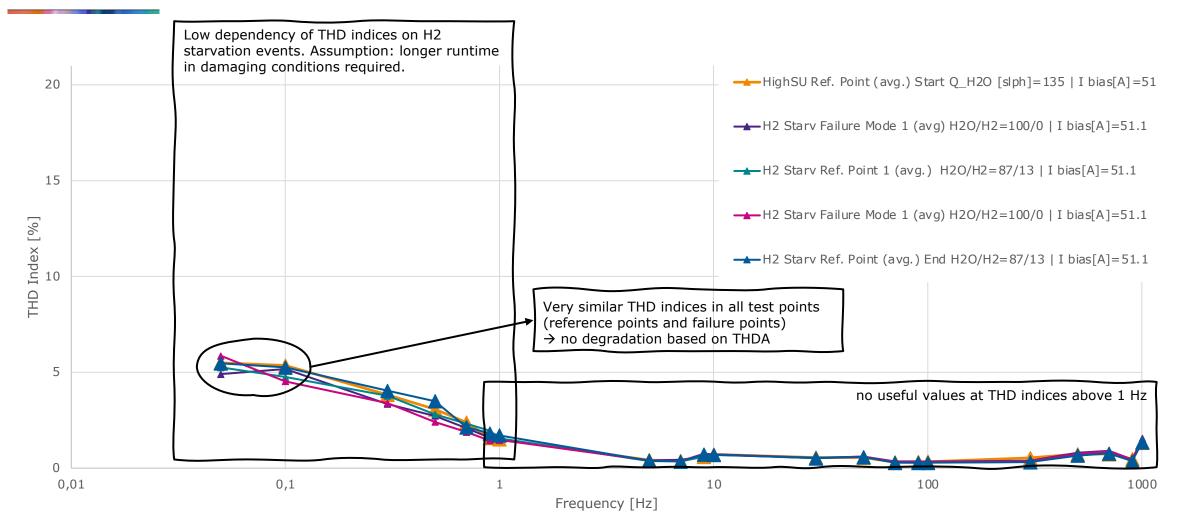

20220516: THD comparison before and after fuel flow decrease: Q H2O = 130slph

0.01

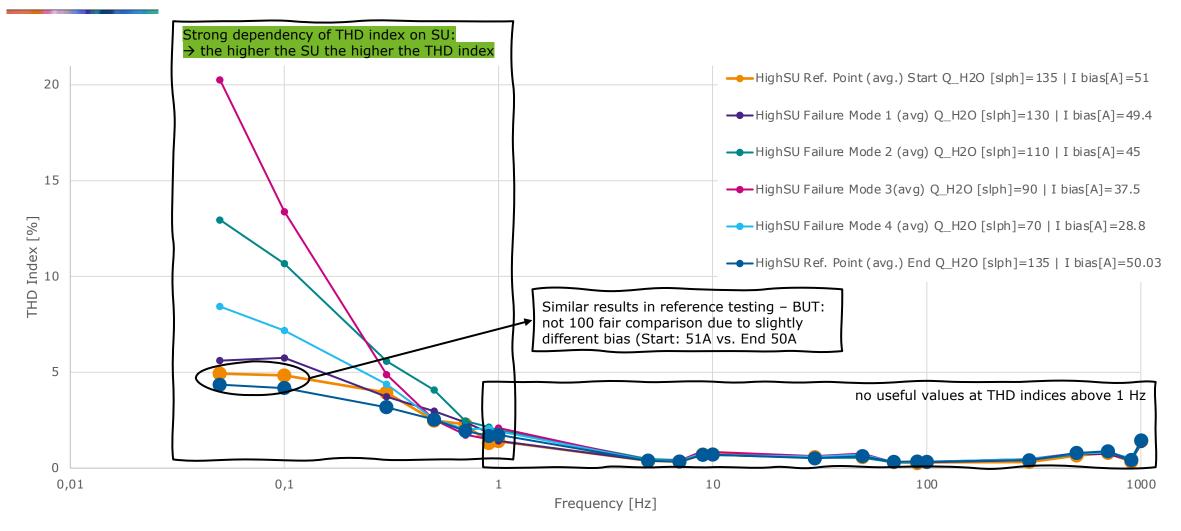
 Every 2 hours excitation event was executed including 22 different excitation frequencies in rising order with same excitation amplitude

100

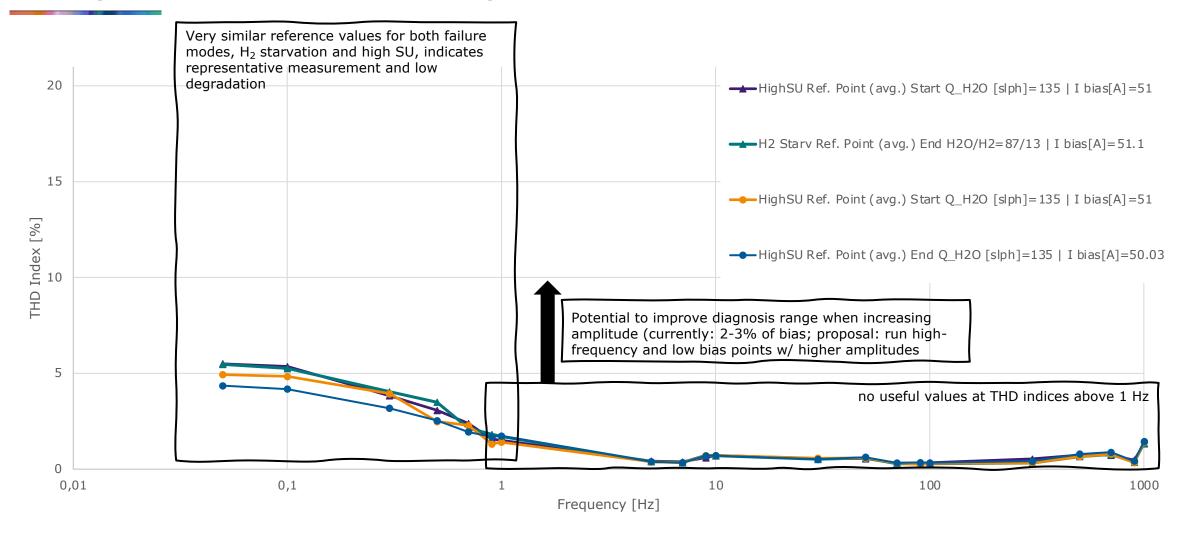
0.01

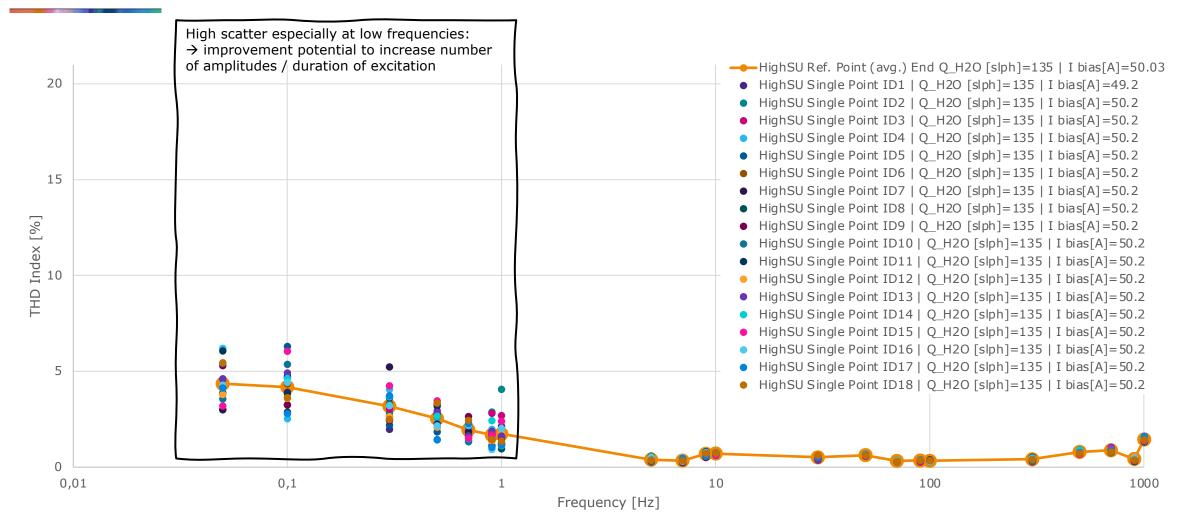

EPFL H₂ starvation test

- CAE partly executed inlet H₂ starvation with only 97/3 and 100/0 water-hydrogen inlet ratio drops
- Excitation amplitudes were at 8% of the bias (bigger then what CAE applied) and multiple more excitation frequencies were applied in the frequencies range
- Large percentage of recorded corrupted (ripples, constant parts, not long enough) → high effort for postprocessing needed


requestion in log scale.

Stack voltage 90%H20-10%H2


CEA H₂ starvation testing – Results

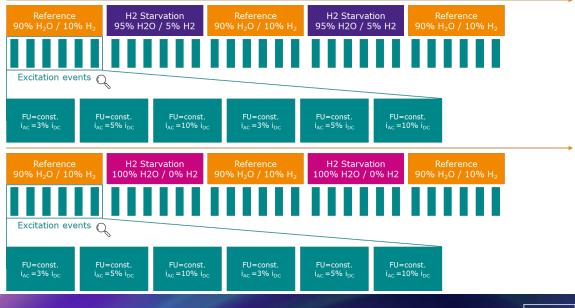

CEA high steam conversion testing – Results

Comparison of reference points – start and end of test

Comparison of references (avg.) w/ individual measurements

Conclusion

Confidential


/ 15

- THD analysis algorithm available and applicable
- Due to lack of data, a clear diagnosis strategy cannot be verified yet
- Involvement in further testing highly appreciated
 - clarification from AVL side how X-ion can be used within full stack testing
 - updated sinusoidal perturbation sequence to be applied in further testing
 - longer duration at lower frequencies (to decrease variance of single test points)
 - increase of amplitudes especially at low bias (and high frequencies)
 - decrease of frequency breaking points at high frequency levels (low information content expected)

Most important: More test data required!

Duration of the excitation [s] 100.0 50.0				
50.0				
10.00004				
16.66624				
10.0				
7.1424				
5.5552				
5.0				
1.66656				
1.0				
0.71424				
0.55552				
0.5				
0.16664]				
0.4				
0.28568				
0.2222				
0.2				
0.06666				
0.04				
0.02856				
0.02222				
0.02				
0.006665				
0.004				

Range currently tested				
Most representative range but high scatter \rightarrow increase of duration (?)				
Potential range w/ increased amplitudes				

Thank you

www.avl.com

Confidential